SDTM-ETL 4.4 User Manual and Tutorial

Author: Jozef Aerts, XML4Pharma E

Last update: 2023-11-12 S D M

Tutorial: Additional filtering on "'looping" variables

Table of Contents

TADIE OF COMIENTS ...vvviiiiiiiiiiiiie ettt e e e e e e ettt et e e e e e s e ssaabaaaeeeeeesesssssaaaaeseeessssssnsaasees
AT A (o Te 1D To15To) + BT RRR
WOTKING EXAMPIE ..ottt ettt st ettt
5500V 1 #2150 s OO PRPRRRRRRR
SOIULION OF e EXEICISES ..vvvvviiiiiiiiieeeeeieeeee ettt e e e ettt e e e e e e s e et teeeeeesssssasaaaaaeeeesssssasanaareees
(0703 3167 113 o) o TR

Introduction

SDTM-ETL already allows a lot of filtering using the wizards following drag-and-drop actions
from the ODM tree to SDTM/SEND cells.

There are however situations where one would later want to add additional filters on which ODM
data points make it into the SDTM. This may be the case when "fine-tuning" the SDTM datasets.
For example:

- one only want to include "new" data points, i.e. that come in the ODM with
"TransactionType='Insert".

- the ODM comes with "artificial" datapoints with the value "M" (for "missed") although the test
was optional, and no reason for the "missing" is provided. Classically, such data points do not go
into the ODM at all.

SDTM-ETL v.4.4 now allows to add additional filters for those variables that essentially do the
selection (as often described as "one record per subject per XXX"), which are called "looping
variables" in SDTM-ETL, as they describe the "looping over ...".

Typically these "looping variables" in SDTM-ETL are:

- for "Interventions": the --TRT variable

- for "Events": the --TERM" variable

- for "Findings": the --TESTCD variable.

Additional "looping" variables may be assigned, but this is usually not really necessary. For
example, for "Findings", typical additional (but usually optional) "looping" variables are
VISITNUM, --TPTNUM (or --TPT).

Working Example

We will explain the new feature using the well known "CES" ("CDISC Example Study"), developed

already many years ago by our colleague Dave Iberson-Hurst. We will develop a few mappings for

the VS (Vital Signs) SDTM dataset.

Our ODM metadata are represented in SDTM-ETL as:

3 oDM
o[Study
o= [] GlobalVariables
o= [BasicDefinitions
2 [MetaDataversion : CDISC Example Study Metadata
o [Protocol
7 [StudyEventDefrBaseline Visit

¢ 3 Fumoa B Vet o)
o= [Descripi

o= [ltemGroupDef ; Common
o= [temGroupDef : Demographics
o= [temGroupDef : Smoking History
o= [ltemGroupDef ; Drinking History
o ItemGrnupDe
o= [Description
o= [temDef: Height
o= [ltemDef : Weight
o=] ltemDef : Systolic BP
o= [temDef : Diastolic BP
o= [temDef: Dizzyness at low DBP
[y Alias - [SDTM] - VS
o=] temGroupDef : XRay
o= [temGroupDef ; Complaints due to smoking
o= [FormDef : Prior or Concomitant Medications (ACRO)
o= [FormDef: Laho

=] FnrmDef.
o= [Description
o= [ltemGroupDef ; Comman
T = ItemGrnupDef:
o= [Description
o= [ltemDef : Weight
o=] ltemDef : Systolic BP
o=] temDef : Diastolic BP

[y Alias : [SDTM] - VS
o [FormDef : Laboratory

There are two (sets of) visits: a "baseline" visit, and a "Week 1" visit, which is repeating.
Each of these has it own sets of forms, and within that form, a group "physical exam" (yes, I know,
the name may be confusing), which is essentially a vital signs form.

After we have instantiated the VS domain (drag-and-drop to the bottom), a row "CES:VS" is
created:

im STUDYID DORMAIN TLIETESTCD TLIETEST [TLIECAT TLIESCAT TLTIRL Tl
s STUDYID DOMAIN [TS.TSSEQ [TS.TSGRPID TS.TSPARMCD [TS.TSFARM [TS.TSWAL m
:|RELREC STUDYID ROOMAIN USUBJID IDVAR IDVARVAL RELTYPE RELID

¢ |SUPPQIUAL STUDYID ROOMAIN USUBJID IDVAR IDVARVAL SUPPQUAL.QN... SUPPQUALQL... |5
:|RELSUB STUDYID USUBJID RELSUB.POOLID RELSUB.RSUB... RELSUB.SREL

& (9] STUDYID DOMAIN QLNHOID OLOISEQ OLOIPARMCD [OLOIPARM QLOIVAL

:|CES:VS STUDYID DOMAIN USUBJID VS.VSSEQ S.VSGRPID S5.WSSPID VS VSTESTCD

One also sees that "VSTESTCD" has a cyan edge, meaning that it is a "looping variable", i.e. the
selection of the data from the ODM will be done using the mapping code in VSTESTCD.
A double-click on "CES:VS" also shows this:

Dataset will have no data: [|

Structure: Number of levels :- 2

Level 1 USUBJID -

Level 2 VS.VSTESTCD |+

[] Apply on Subject Level

] Apply on Subject Level

| | | [1 Apply on Subject Level

We always start the developing of the mappings with the looping variables. For USUBIJID, this was
probably already done when doing the "drag-and-drop", by leaving the checkbox "" on:

? Copy STUDYID from loaded ODM
Copy DOMAIN from originator

({ [+] Automatically add USUBJID N

Automatically add —-SEQ

OK Cancel

meaning that for the USUBJID, we start from the "SubjectKey" in the ODM data.
The mapping script for USUBJID then is:

The Transformation Script
1 $USUBJID = usubkjid{};

If desired, it can be adapted/extended e.g. as:

In our case, most items in the ODM metadata have already been annotated for use in SDTM. One
can see this from the cyan background color:

o [ltemGroupDef : Physical Exam
o= [Description
o= & ltemDef: Height
o & ltemDef: Weight
o= @ [temDef: Systolic BP
o= ¥ ltemDef : Diastolic BP

o ¥ [temDef: Dizzyness at fov-200
EI Alias SD'I%rI{ s OID: I_DIABP - Mame: Diastolic BP
Alias - [SDTMI: SDTM Variable Name: VSORRES
o=] temGroupDef : XRay

S0OTM Alias: VSORRES WHERE VSTESTCD=DIABP
e 1 temGrounNef - Comnlainfs diue fo smokino I :

This also means that they are "hot candidates" for VSORRES (and thus for VSTESTCD), which
can be seen when selecting "VSORRES" as the SDTM cell. The "traffic lights" then change into:

7 [temGroupDef : Physical Exam
o= [Description
o=t KemDef : Height

ot B ltemDef: Weight

emDef : Systolic BP

ot B ftemDef: Diastolic BP

o ¥ [temDef : Dizzyness at low DBP
[y Alias : [SDTM] : VS

o= = lamizrrunNaf - ¥R aw

1.e. one sees a square around them.
Or one uses the menu "Navigate - Find hot SDTM candidate", which will open the ODM tree at that

point when it was collapsed, and highlight the first of these "hot candidates".

We also see that vital signs were measured in both the visits, but with different form and subform
(ItemGroup) identifiers:

T |j|lternGrnupDef: FPhysical Exam |
o= [Description
o @ [temDef: Height
|__°“| MeasurementUnitRef : MU_CM
|j| MeasurementUnitRef : MU_INCHES
B Alias : [SDTM] : VEORRES WHERE VSTESTCD=HEIGHT
o= [Question
o & ltemDef: Weight
o & ltemDef: Systolic BP
o # [temDef: Diastolic BP
o ¥ [temDef: Dizzyness at low DBP
[Alias - [SDTM] : VS
o= [temGroupDef : XRay
o= [temGroupDef : Complaints due to smoking
o= [FormDef : Prior or Concomitant Medications (ACRO)
o= [FormDef : Laboratory
7 StudyEventDef : Week 1 Visit
o [FormDef: Week 1 and 2 Form
o= [Description
o= [temGroupDef : Comman
7 [temGroupDef : Weekly Physical Exam
o= [Description
o & [temDef: Weight
o & ltemDef: Systolic BP
o 4 ltemDef: Diastolic BP

We can now drag-and-drop any of the hot candidates to the SDTM "VSTESTCD" cell, leading to:

| £ Import ternDef: Height - for SOTM Variable VS.VSTESTCD x

H i) Import XPath expression for ltemData Value attribute {from Clinical Data)

i® Import XPath expression for another ltemData attribute/subelement (from Clinical Data)

|Item'DID |V|
i) Import ltemDef attribute value (static value from Study Definition)

[] Generalize for all StudyEvents Except for .. No Exceptions Only for .. No Inclusions
[] Generalize for all Forms Except for .. No Exceptions Only for .. No Inclusions
[] Generalize for all temGroups Except for .. No Exceptions Only for .. No Inclusions
[] Generalize for all tems Except for .. No Exceptions Only for .. No Inclusions

[] view/Edit XPath expression (advanced)

OK Cancel

as we want to obtain the vital signs data for any visit, we click the checkbox "Generalize for all
StudyEvents".

As the vital signs data come from different forms, we want to do a selection, so we check
"Generalize for all Forms" and then use "Only for ...":

I=Rr=1l
| Import ltemDef: Height - for SDTM Variable VS.VSTESTCD T |=I1S0RRESU
| LB LBORRESU
@) Import XPath expression for ItemData Value attribute (from Clinical Data) L MBMBTSTDTL
L |MSMSAGENT
@ Import XPath expression for another ltemData attribute/subelement (from Clinical Data) MLMIORRES
|Item0ID ‘v| MO MOPOS
CV.CVSCAT
) Import temDef attribute value {static value from Study Definition) ME.MKSCAT
§)) MY NVCAT
Generalize for all StudyEvents Except for .. No Exceptions Only for .. No Inclusions [DEOESCAT
cneralizeforall Forms Except for .. No Exception Only for .. o Inclusions RP.RPSCAT
:S RE RECAT
[] Generalize for all Item |£] Inclusions for FormDef x
[] Generalize for all tem

[»

Bl @ D)
¥ | F_BASELINE - Baseline Visit Form
[] viewlEdit XPath expre: l—_—

[] F_CM - Prior or Concomitant Medications (ACRO)

[| F_LAB - Laboratory
e

S — - {lv]F_WEEK_1_2 - Week 1 and 2 Form—>

:|I55.55TESTCD |55.59
: F_DIARY - Diary Form

JruTusPID TUTU B

|TRTRSPID TR.TR [1F_AE - Adverse Event Form (ACRO) -
|| i|VS.NSTESTCD [VS.VS ‘

|FAFATESTCD [FAFA] Clear All

|sR.SRsPID SR SH

JTAELEMENT [TATAL | OK || Cancel |

[(e ST

and then select the two forms that contain the items on vital signs.

For the subforms (ItemGroups), from the ODM tree, we see that those for the vital signs have a
different ID depending on whether it is the baseline form, or the week 1 2 form', so also here, we
must make a selection. So we check "Generalize for all Items" and use "Only for", and select the
appropriate subforms (ItemGroups):

! The reason is that in the repeating weekly (repeating) visit, the height is not measured anymore.

| £ Import ternDef: Height - for SOTM Variable VS.VSTESTCD

? i) Import XPath expression for ltemData Value attribute {from Clinical Data)

i® Import XPath expression for another ltemData attribute/subelement (from Clinical Data)

| [temOiD

i) Import ltemDef attribute value (static value from Study Definition)

Generalize for all Forms

Generalize for all StudyEvents Except for ..

Except for ..

No Exceptions

No Exceptions

Only for ..

Only for ..

No Inclusions

2 Inclusions

NuExceptiune(Only for .. f{Mu:rlm:lusiu:rns

—)
(Generalize for all temGroups Except for ..

J—

[]Gt
L] Vil

|TE]
(v
o]
()

m

| £ Inclusions for lternGroupDef

7

[]15_COMMON - Common
[]15_DM - Demographics
[] 15_SH - Smoking History

- Drinking Histo

IG_PE_BASE - Physi
[]1G_XRAY - XRay
[]1G_SMOKING_COMPLAINTS - Complaints due to smoking

|

T

all

IG_PE_WEEK - Weekly Physical Exam)

——

Clear All

OK

Cancel

and as we do not want to use "Dizziness" as a VS test (we can later add it as a "non-standard
variable going into SUPPVS), we also select on the items, using "Generalize for all Items".
In the current case, it is then easier to exclude "dizziness", so we can better use "Except for ...":

IC

|£| Import ltemDef: Height - for SOTM Variable VS.VSTESTCD * B
LI

?) Import XPath expression for ltemData Value attribute (from Clinical Data) :*:
gl

i@ Import XPath expression for another temData attribute/subelement (from Clinical Data) I

itemOID | W

C

i) Import ltemDef attribute value (static value from Study Definition) I

I

Generalize for all StudyEvents Except for .. No Exceptions Only for .. Mo Inclusions 0
Generalize for all Forms Exceptfor.. |MNoExceptions | Onlyfor.. | 2Inclusions R
R

Generalize for all temGroups Except for .. No Exceptions Only for .. 2 Inclusions L

[v] Generalize for all ltems }{ Except for .. }n Exceptions | Only for.. | NoInclusions E

- - g e i
[ViewrEdy |£:| Exclusions for lternDef >

- [[T_HEIGHT - Height

- [] I_WEIGHT - Weight
‘[ss)
‘o [| 1_SYSBP - Systolic BP

TR [1_DIABP - Diastalic BP
L :|vs
i I‘,i—rﬁ,'— i |_DIZZY - Dizzyness at low DB -

——

Isr —
1= Clear Al

||ITE

I

| ok H Canoel|

H vy

When all done, we get:

After clicking "OK", as new wizard is displayed:

ODM Itermn-50TM Codelist mapping >

- The system found 4 ODM ltems
= which can be mapped to the SDTM CodeList CL.C66741.VSTESTCD.

Do you want to use the mapping wizard to provide such a mapping ?

Or do you want a template script will be generated
that you need to fill in, in order to categorize the data?

You can also choose to ignore the CodeList for now,
then no codelist mapping is performed at all.

Mapping Wizard | | Template Script lgnore CodeList

In most cases, we will want to do the "Mapping Wizard" do the work to map to CDISC Controlled
Terminology (CT), so we click "Mapping Wizard", leading to:

Codelist mapping between a set of ODM lterms and 50TM Codelist "Vital Signs Test Code” X

? ODM Item SDTM CodeList ltem
[] Show ODM decoded values
I_HEIGHT ABI - Search
I_WEIGHT ABI - Search
I_SYSBP ABI - Search
I_DMABP ABI - Search
MISSING VALUE ABI - Search

O Generate subset codelist from selected SDTM items,
and assign to the SDTM variable VS VSTESTCD

O

[] Adapt variable Length for longest CodeList item

[| Add comment line to each mapping

[] Except for items already mapped

Attempt 1:1 mapping [] Also use CDISC Synonym List Reset from 1:1 mapping attempt

[] Also use Company Synonym List

[] use SDTM decoded value
[] Ask to store mappings as synonyms to Company Synonym List

OK Cancel

and we can give the automated mapping (based on word similarity with the ODM "names" - these
can be shown using the "Show ODM decoded values") a chance by clicking "Attempt 1:1
mapping", leading to:

Codelist mapping between a set of ODM lterns and SDTM Codelist "Vital Signs Test Code” s

? QDM ltem SDTM CodeList ltem
[] Show ODM decoded values

|_HEIGHT HEIGHT - Search

|_WEIGHT WEIGHT - Search

|_SYSBP SYSBP - Search

|_DMABP DIABP - Search

MISSING VALUE - Search

O Generate subset codelist from selected SDTM items,
and assign to the SDTM variable VS VSTESTCD

Ll
[] Adapt variable Length for longest CodeList item
[] Add comment line to each mapping

[] Except for items already mapped
Attempt 1:1 mapping [] Also use CDISC Synonym List Reset from 1:1 mapping attempt

[] Also use Company Synonym List

which ("oh surprise") to exactly what we want.

After clicking "OK", the mapping script is automatically created, and assigned to the "VSTESTCD"

cell:

Mapping Script Editor for SDTM Variable VE.VSTESTCD

ﬂ 1 # Mapping using ODM element TtemData with TtemOID T_HETGHT - value from attribute TtemgID
2 + Gemeralized for all StudyEvents

or all Forms within the StudyEvent
or all TtemGroups within the Form
or all Items within the ItemGroup
_DIzzy
DM Ttems [I_HEIGHT, I_WEIGHT, I_SYSBF, I DIABE] to SDTM Codelist VS.VSTESTCD

*CL.CEET41.VSTESTCD
(¢StudvEventData /FormData [@FormOID-'F_BASELINE' or @FormOID-'F_WEEK_1_2']/ItemGroupDatal@ItemGroup0ID-'IG_PE_BASE'

6 + Except
7 # Mapping fo
8 + with CodeL:
9 $CODEDVALUE - x
10 if ($CODEDVALUE == 'I_HETGET') |

11 SNEWCODEDVALUE = 'HEIGHT';

1z } elsif ($CODEDVALUE — 'I_WEIGHI') [
13 SNEWCODEDVALUE = 'WEIGHT';

14) elsif ($CODEDVALUE == 'I_SYSBP') [
15 GNEWCODEDVALUE — 'SYSB2';

16 } elsif ($CODEDVALUE =
17 SNEWCODEDVALUE = :

or @ItemGroup0ID-'IG_PE_WEEK']/ItemData(nct (BTtem0ID~"I_DIZZY")]/@ItemOID) ;

DIAER") [

18) elsif (SCODEDVALUE — ') {
18 SNEWCODEDVALUE = '*;
an | elss [

2l SNEWCODEDVALUE = "NULL';
2z)
23 $VS.VSTESTCD = $NEWCODEDVALUE;

Sometimes it is a bit difficult to see the whole XPath expression, and one needs to scroll a bit to the

right.

If we had also checked the checkbox "View/Edit the XPath expression", the more user-friendly
dialog splitting up the XPath over the different levels would now appear:

Wiew / Edit XPath Conditions h:4

E' Condition for StudyEventData: [| Edit
Condition for FormData: [] Edit [@FormOID="F_BASELINE" or @FormOID="F_WEEK_1_27

Condition for temGroupData: [| Edit [@ItemGroupOID=1G_PE_BASE or @ltemGroupOID=1G_PE_WEEK]

Condition for ltemData [[] Edit [not{@ltemCID=_DIZZY"]
Value selection; [] Edit @ltemoID
| OK || Cancel|

After clicking "OK" (one may still want to edit the mapping script, but it is better to first test it
using collected (or mock) ODM data), we see that the VSTESCD cell is "grayed out", meaning that
there is mapping data available for that variable.

It now usually is custom to also generate the mapping for VSTEST. We can go through the same
procedure (but another codelist will be presented to map to). However, as there isa 1:1
correspondence between VSTESTCD and VSTEST, and the software knows this, the easier is to
just double click on VSTEST, and a dialog will show up, asking:

Use decode() function? o

- The easy way to get the values for the variable VS.VSTEST
= is to use the decode function on the codelist CL.CG6741.VSTESTCD
of the variable VS VSTESTCD.

The mapping script then reduces to:
$VSVSTEST = decode($VS.VSTESTCD, 'CL.C6ETA1.VSTESTCD', "),

Do you want me to implement this mapping script?

Yes, please No, thanks

which would take the "decode" value of the codelist for VSTESTCD, which usually is present when
the CDISC-CT that comes with the software is used. When clicking "Yes, please", the mapping
script for VSTEST simply becomes:

The Transformation Script

1 # Mapping using the decode() function on codelist CL.CEET41.VSTESTCD of wariable V3.VSTESICD
2 SVS5.VSTEST = decode (5V5.VSTESICD, 'CL.C66741.VSTESTCD', ")

establishing the 1:1 relation.
REMARK: when using the "CodeList mapping wizard", it may be a good idea to also check the

checkbox "add comment line to each mapping", especially as you also want other people to
understand how your mapping was done.

e —

C__ | Add comment line to eﬁm

| Except for items already mapped

Attempt 1:1 mapping | __| Also use CDISC Synonym List Reset from 1:1 mapping attempt

|| Also use Company Synonym List
Time to test!

As we have already mappings for different variables: STUDYID (taken from the Study-OID in the
ODM), DOMAIN, USUBIJID, VSTESTCD and VSTEST, the best is to use the menu "Transform -
Generate Transformation Code for SAS-XPT*"

Tmnsfnrm| Validate CDISC Library Options About

Generate Transformation (XSLT) Code for SAS-XPT & F7 E
Generate Transformation (XSLT) Code for CDISC Dataset-JSON B
Generate Transformation (X5LT) Code for CDISC Dataset-XML F&

.| Generate Transformation (XSLT) Code for UTF-8 encoded CSV

i Execute existing Transformation (XSLT) Code for SAS-XPT Fo

t| Execute existing Transformation (X5SLT) Code for CDISC Dataset-XML
Execute existing Transformation (XSLT) Code for CDISC Dataset-JSON
Execute existing Transformation (X5LT) Code for UTF8-encoded CSV
Create SCQL to generate Database Tables F&
| Create SQL 'Insert’ Statements

n Generate define.xml 2.1 starting from definexml 2.0
[T T -1r WL NTEAREF T

-n
L=

s DlPlD’Jl'ﬂlEll‘l‘lll‘l‘l [lE]

=

and, after going to some intermediate dialogs (e.g. enabling to save the generated XSLT code to
file) then select the ODM file with the clinical data, e.g.:

2 We will now still stick to XPT format, although we expect that FDA and other regulatory
authorities will switch to modern CDISC Dataset-JSON in the next 2 years.

https://www.cdisc.org/dataset-json
https://www.cdisc.org/dataset-json

L] Execute Transformation (X5LT) Code for SAS-XPT >
2

ODM file with clinical data:
|D:1.SDTru1-ETL1.TestFiIe51.0Dr-p11-3-11.CES_CIinicaIData_single_subject.xml (|

[] MetaData in separate ODM file

Browse...

Browse...
[| Administrative data in separate ODM file
Browse...

[] save output XML to file

i

Browse...
[| Perform post-processing for assigning --LOBXFL
[] split records > 200 characters to SUPP-- records
Move non-standard SODTM Variables to SUPP-- Move Comment Variables to Comments (CO) Domain
Move Relrec Variables to Related Records (RELREC) domain [| Try to generate 1:N RELREC Relationships

View Result SDTM tables [] Adapt Variable Length for longest result value
[| Generate "NOT DONE’ records for QS datasets [] Re-sort records using define.xml keys
[| save Result SDTM tables as SAS XPORT files [] Perform CDISC CORE validation on generated SAS XPORT files

SAS XPORT files directory:
Browse...

I

71 Add lncation of SAS XPORT files to define.xml [71 Store link as relafive nath

For testing, it usually is not necessary to generate XPT files already, as SDTM-ETL has a build-in
viewer for inspecting generated SDTM, independent of the submission format.

So we leave "Save SDTM tables as SAS XPORT files" unchecked.

When then clicking "Execute Transformation on Clinical Data"

Move non-standard SDTM Variables to SUPP-- Move Comment Variables to Comments (CO) Domain

Move Relrec Variables to Related Records (RELREC) domain [| Try to generate 1:N RELREC Relationships

View Result SDTM tables [| Adapt Variable Length for longest result value

[] Generate '"NOT DONE' records for Q5 datasets [] Re-sort records using define.xml keys

[] Save Result SDTM tables as SAS XPORT files [] Perform CDISC CORE validation on generated SAS XPORT files

SAS XPORT files directory:

Browse...
[] Add location of SAS XPORT files to define.xml [] store link as relative path

[] Additionally generate a merged dataset for "split’ domain datasets
Messages and error messages:

= Execute Transformation on Clinical Data

Close

the transformation is executed (some messages may appear in the "Messages and error messages
box", and the generated table or tables are displayed:

| £| SDTM Tables

@ e

STUDYID DOMAIN USUBJID VS VSSEQ VS VSTESTCD VSVSTEST
CES WS 001 1|HEIGHT Height
CES VB 001 2\WEIGHT Weight
CES Ve 001 3|3Y3SBP Systolic Blood Pressure
CES V] 001 4 DIABP Diastolic Blood Pressure
CES VB 001 5WEIGHT Weight
CES Vi 001 6/5YSBP Systolic Blood Pressure
CES V] 001 7|DIABP Diastolic Blood Pressure
CES WS 001 BWEIGHT Weight
CES VS 001 9|5YSBP Systolic Blood Pressure
CES V] 001 10|DIABP Diastolic Blood Pressure

For VSORRES, we can now do the same drag-and-drop, use the same "generalization" and "only

for ..." and "except for" - all these checkbox values are remembered.

So doing drag-and-drop for the first "Height" item to this time VSORRES, and accepting all earlier

selected choices, leads to the automatically generated mapping script for VSORRES:

|£] Mapping Script Editor for SDTM Variable VS.VSORRES

EI 1 # Mapping using OTM element TtemData with TtemOID I_HETGHT
T all StudyEvents

r all Forms within the StudyEvent
r all ItemGroups within the Form
T all Items within the ITemGroup
1_DIzzy

6 # Except for
7 $VS.VSORRES = xpath(/StudyEventData/FormData|@FormOID='F_EASELTNE' or @FormOID='F_WEEK 1 2']/TtemGroupData [@TtemGroupOID='TG PE_BASE' or @TtemGroupCID='1G_PE WEEK']/TtemData[not{@TtemOID='T_DIZZY')]/@Value);
i

and executing the mapping on the (test) clinical data again, leading to:

|£| SDTM Tables x
@ [CESNS
STUDYID DOMAIN USUBJID VSVSSEQ WS VSTESTCD VSVSTEST VS VSORRES

CES V3 001 1|HEIGHT Height 193 |

CES V3 001 2IWEIGHT Weight 90

CES VS 001 3|5YSBP Systolic Blood Pressure 120

CES VS 001 4|DIABP Diastolic Blood Pressure 80

CES V3 001 5/WEIGHT Weight 901

CES VS 001 6|SYSBP Systolic Blood Pressure 123

CES VS 001 7|DIABP Diastolic Blood Pressure 90

CES VS 001 B/WEIGHT Weight 399

CES V3 001 9|3YSBP Systolic Blood Pressure 127

CES VS 001 10|DIABP Diastolic Blood Pressure a4

We can then continue providing the mapping for other variables, as explained in other tutorials.
We will here show only how this can be very easily be done for VISITNUM and VISIT, and then

start explaining the new feature of adding additional filters on the looping variables (here:

VSTESTCD).

For the visit number, simply drag-and-drop from the ODM item "StudyEventDef: Baseline Visit":

o [MetaDataVersion : CDISC Example Study Metadata
7 [Protocol
9 [StudyEventDef : Baseline Visit
e |j|FnrrnDef: Baseline Visit Form
o= [Description
o=] temGrouplDef : Commaon
o [temGroupDef : Demographics

A T8 Bar ™ rrnnMiaf - Coanlkinn Wictane

to the SDTM cell "VISITNUM".

The system remembers that we want to have VS data retrieved for all visits, so will present us:

Import StudyBEventDef: BASELIME - for SOTM Variable WS.VISITMUM

q

@ Import XPath expression for

i) Import attribute value {static value) for

oD

Generalize for all StudyEvents

Except for ..

No Exceptions

Only for ..

[View/Edit XPath expression (advanced)

stating "do so for all visits (StudyEvents). After clicking OK, the mapping script is automatically

created:

4

r The Transformation Script

OK

Cancel

and we then test on the clinical data, the result is:

1 # Mapping using COLCM element StudyEventData using value from attrikbute StudyEwventOID
2 # Generalized for all StudyEvents
3 SVS.VISITHNUM = xpath(/StudyEventData/@5tudyEventlID/) :

| £ SDTM Tables
(i) [cesws J—
STUDYID | DOMAIN | USUBJID | vSVSSEQ | VS.VSTESTCD VS.VSTEST vs.vSORRES [vsvisTum\
CES B 001 1|HEIGHT Height 193 BASELINE
CES B 001 2|WEIGHT Weight %0 BASELINE
CES B 001 3/SYSBP Systolic Blood Press__ 120 BASELINE
CES B 001 4DIABP Diastolic Blood Pres 80 BASELINE
CES B 001 5|WEIGHT Weight 90.1 | WEEK_1
CES B 001 6/SYSBP Systolic Blood Press... [123 WEEK_1
CES B 001 7DIABP Diastolic Blood Pres... |90 WEEK_1
CES B 001 8|WEIGHT Weight 89.9 | week 2
CES B 001 o[SYSBP Systolic Blood Press... [127 | weEk 2
CES VS 001 10/DIABP Diastolic Blood Pres... |84 | week 2

which is ... not what we want.
So we need to adapt and edit the mapping script manually.
We can generate an "if-elsif-construct” e.g. :

Mo Inclusions

r The Transformation Script
1 # Mapping using ODM element StudyEventData using value from attribute StudvyEventOID
2 # Generalized for all StudvEvents
3 SVISIT = xpath(/5tudyEventData/@5tudyEvent0ID/S) ;
4 if ($VISIT = '"BASELINE') |
& SVS.VISITHUM = 0:
6 } elsif($VISIT = "WEEE 1"} |
7 SW3.VISITHUM = 1;
8 } elsif($VISIT = 'WEEE 2') |
9 SVS.VISITHNUM = 2;
10 } else |
11 SVS.VISITHUM = '';
1z }
4]
r Scripting Language Functions
+ = * i xpath com
usubjid investigator site name sitename que:
suhstring substring-before substring-after concat string-length rep
e
{ if elsif else trim upper-case lower
I‘-"--'-—=_ _=)
leading to the result:
-r"'_-_!_
USUBJID VS VSSEQ VENSTESTCD VS VWSTEST YEVSORRE VS VISITMUM
001 1|HEIGHT Height 193 0«
001 Z2IWEIGHT Weight a0 0
001 3|13Y3BP Systolic Blood Press... (120 0
001 4{DIABP Diastolic Blood Pres... |80 0
001 S|WEIGHT Weight a0.1 1
001 G|3YsSBRP Systolic Blood Press... 123 1
001 7|DIABP Diastolic Blood Pres... |90 1
001 B|WEIGHT Weight g9.9 2
001 9|53¥Y3BP Systolic Blood Press.. (127 2
001 10|DIABP Diastolic Blood Pres... (84 2

For "VISIT" (Visit Name) we can do the same drag-and-drop, use an if-elsif-else structure as for
VISITNUM, or try to do it in a similar, but (for the fun) somewhat different way. For example:

CES:VS

-“""'\-—_

STUDYID| DOMAIN USUBJID V8. VSSEQ VSVSTESTCD VS VSTEST VS VS0RRES | VS.VISITNUM \\LS.VISIT \.I
CES VS 001 1|HEIGHT Height 193 0|BASELINE

CES VS 001 2|WEIGHT Weight 90 0|BASELINE

CES L] 001 3|8YSBFP Systolic Blood Press... [120 0|BASELINE

CES VS 0o 4|DIABF Diastolic Blood Pres... |80 0|BASELINE

CES VS 001 5WEIGHT Weight 90.1 1|WEEK 1

CES VS 001 65YSBP Systolic Blood Press... [123 1|WEEK 1

CES WS 001 T|DIABP Diastolic Blood Pres... |90 1WEEK 1

CES VS 0o B[WEIGHT Weight 29.9 2|WEEK 2

CES VS oo 9|SYSBF Systolic Blood Press... 127 2|WEEK 2

CES VS 001 10|DIABP Diastolic Blood Pres... |84 2|WEEK 2

Performing additional filtering on "looping" variables

As of SDTM-ETL 4.4, it is possible to add additional filters on the "looping" variables such as "-
-TESTCD" (in the case of a Findings domain), --TRT (in case of an Interventions domain), --TERM
(in the case of an Events domain), without needing to edit the XPath expression.

Editing the XPath expression for a "looping" variable can vary from very easy to very difficult,
depending on the complexity of the XPath expression (we would categorize the above generated
XPath expression as "medium complex") and the level of expertise on working with XPath
expressions. XPath is pretty easy to learn, but not all users of the software are willing to invest the
time.

With the new feature however, only a basic understanding of XPath and of ODM are required.

When would you want to add such an additional filter? Some (fictional?) examples:

- A colleague asks you to generate a VS XPT dataset with only the systolic and diastolic blood
pressures, but you do not want to start editing the XPath expression or redo the mapping

- Even worse, the week later, the colleagues wants to obtain a VS XPT dataset with only the systolic
blood pressures with values higher than 120 mmHg (the colleague is new, and does not now how to
do filtering in XPT datasets).

- In ODM, values that have not been collected should not be in the ODM dataset, unless also the
reason why the measurement has not been collected is provided. However, we sometimes see that
some EDC vendors provide a value of "M" (missing) for measurements that were not done,

although they were optional. In such cases, we may do not want to appear these as rows in the
SDTM dataset.

We will demonstrate the new feature using the case of "Weight" data points in our ODM, for which
the value "M" has been provided, and that we want to be filtered out

The result than e.g. is:

|£| SOTM Tables x
.@ [CEs:vs
STUDYID DOMAIN | USUBJID | VSVSSEQ | VS.VSTESTCD VS.VSTEST VS.VSORRES | VS VISITMUM VS.VISIT

CES Vs 001 1|HEIGHT Height 193 0|BASELINE

CES Vs 001 2|WEIGHT Weight 90 0|BASELINE

CES = 001 3lsvsBP Systolic Blood Press... |120 0|BASELINE

CES Vs 001 4|DIABP Diastolic Blood Pres__180____ 0|BASELINE

CES Vs 001 5|WEIGHT Weight M 3 1|WEEK 1

CES Vs 001 BlSYSBP Systolic Blood Presee—Has- 1|WEEK 1

CES Vs 001 7|DIABP Diastolic Blood Pres... |90 1|WEEK 1

CES VS 001 8|WEIGHT Weight 89.0 2|WEEK 2

CES Vs 001 alsvsBR Systolic Blood Press... 127 2|WEEK 2

CES Vs 001 10/DIABP Diastolic Blood Pres... [84 2|WEEK 2

and we don't want this row with VSORRES='"M' to appear at all.

Our mapping script for the looping variable VSTESTCD is:

The Transformation Script

1 # Mapping using 0DM element ItemData with Item0QID I_HEIGHT - wvalus from attribute ItemQID
4 Generalized for all StudyEvents

(3}

Generalized for all Forms within the StudyEvent

Generalized for all ITtemGroups within the Form

Generalized for all Items within the ItemGroup

Except for: I_DIZZIY

Mapping for ODM Items [I_HEIGHT, I_WEIGHI, I_S5YSBF, I_DIRBF] to 5DTM Codelist V5.VSTESTCD
g8 # with Codelist OID "CL.C&&741.VSTESTCD'

| A9 $CODECVRALUE = 1 {/StudyEventData/FormData [EForm0ID="'F_BASELINE' or @FormQID='F_WEEK _1_2']/ItemGroupData[@ltemGroupQID='IG_PE_BZSE' m
10 # map the ODM 0IDs to CDISC-CT

S

11 if ($CODEDVALUE == 'I_HEIGHT') {

1z SHNE WALUE = 'HEIGET':

13 } els)DEDVALUE == 'I_WEIGHT') |
14 SMEWC! JALUE = 'WEIGHT':

15] els)DEDVALUE == 'I_SYSBP') |
12 ANFUCATFIVATITF = 1SVSRDT -

with the selection done in the statement SCODEDVALUE = xpath(.........);

We are at the level of the data point itself in the ODM, 1.e. on the "[temData" level.
The attributes of "ItemData" are, according to the ODM specification:

3.1.4.1.1.1.1.1 ItemData

Body:
(AuditRecord?, Signature?, MeasurementUnitRef? Annotation*)

Attributes:

ItemOID oidref Reference to the [temDef.

TransactionType (Insert | (optional) The TransactionType attribute need not be present in a Snapshot document.
Update |
Remove |
Upsert |
Context)

Value text foptional) The data collected for an item. This data is represented according to DataType

attribute of the ItemDef.
IsNull (Yes) (optional) 1sNull 1s a flag to signify that an item's value 1s to be set to null. If the Value

attribute is set, IsNull must not be set. If IsNull 15 set, the Value attribute must
not be provided. In the interest of creating non-verbose XML instances, one
should not use ItemData elements with IsNull set to "Yes" to indicate
uncollected data. The better practice is to transmit only collected data.
so, we can further filter on "ItemOID", "TransactionType", "Value" and "IsNull" (the latter is
seldom used). We could also further filter on values within the child elements "AuditRecord",
"Signature", "MeasurementUnitRef", or "Annotation", when present. This will however be
extremely seldom be necessary.
We can even further filter on ancestor element values - we will give an example later.

So, we do have a data point with value "M" in the source, for which we don't want to have a row
generated. In the ODM it is represented by:

<ItemtroupData o .

<ItemData "I_WEIGHT" MD
<MeasurementlUnitR=r "MO G/

</ItemData>

<ItemData "I_SYSBE" 123"
<MeasurementUnitResf "MU_ MMHG" />

</ ItemData>

<ItemData "I_DIBBE" "o90"
<MeasurementlUnitRef "MUO_MMHG" />

<f/ItemData>
</ ItemzroupData>

In order to filter out, we use the new function "xpathfilter":

https://www.cdisc.org/standards/data-exchange/odm

d # with Codelist OID "CL.CeeT4l.VSIESTICD'

9 CODEDVALUE = zpath{/5StudyEventData/FormData|@Form0I0D="F BRSELINE' or EFor
,;]l;,ﬁ hCD[JEDVELUE = xpathfilter ($CODEDVALUE, " [not (EValue="M")]™):

11 if ($CODEDVALUE == 'I_HEIGHT') [

12 SNEWCODEDVALUE = "HEIGHT':

13 } #lsif ($CODEDVALUE == "I _WEIGHT') {

14 SNEWCODEDVALUE = "WEIGHT';

15 } elsif ($CODEDVALUE == 'I_SYSBE") |

16 SNEWCOLDEDVALUE = '"S5YSEE';

17 1 &1aif (ACANFTWRATIF == 'T NTLZRE'Y [

i.e. immediately after the primary selection (the XPath statement generated by the drag-and-drop
and the subsequent wizards), we add a statement:

$CODEDVALUE = xpathfilter(SCODEDVALUE,"[not(@ Value="M")]");

Resulting in:

©

CES:VS

STUDYID DOMAIN USUBJID | VSVSSEQ VS VSTESTCD VS VWSTEST VS VSORRES VSVISITMUM | VS VISIT
CES VS 0o 1|HEIGHT Height 193 0|BASELINE
CES Vs 001 2|WEIGHT Weight 90 0|BASELINE
CES VS 001 3|SYSBP Systolic Blood Pressure 120 0|BASELINE
CES VS 001 4|DIABP Diastolic Blood Pressure a0 0|BASELINE
CES VS 001 5/SYSBP Systolic Blood Pressure 123 1|WEEK 1
CES V3 001 6|DIABP Diastolic Blood Pressure 90 1|WEEK 1
CES Vs 001 7|WEIGHT Weight 89.9 2|WEEK 2
CES VS 001 3|SYSBP Systolic Blood Pressure 127 2|WEEK 2
CES VS 001 9|DIABP Diastolic Blood Pressure 84 2|WEEK 2

where one sees that the row with VSORRES=M has disappeared.

The "xpathfilter" line and functionality looks like a normal variable assignment, but there are some

rules:

e Currently, the variable on the left, must be the same as the variable used in the primary selection
(i.e. from the line " = xpath(.......);)

e The first argument currently must be the variable also set on the left of the equation (self-
assignment).

e The second argument must be a string containing a relative XPath expression, which must be an
XPath "predicate" (see further).

So e.g. the following are invalid statements and will not result in filtering

$A = xpath(........);

$B = xpathfilter($A, ...);
$A = xpath(........);

$B = concat($A, 'test');
$A = xpathfilter($B);

We envisage to remove these limitations in future versions of the software.

For the second argument of the function, this must be an XPath predicate.
XPath predicates are essentially "where statements", and where the statement is embedded in square
brackets [...], i.e. the square brackets essentially define a "where".

https://www.tutorialspoint.com/xpath/xpath_predicate.htm

In our example:
"[not(@ Value="M")]"

we pass a string (within double quotes) with the string value being a predicate (a "where" statement
in square brackets") stating "the filter selects the data points for which the value (value of the
(@ Value attrribute) is not equal to the string 'M' "

Other examples of predicates that can be used when the XPath result is at the level of "ItemData"
(the datapoint level):

[@Value > 90] : selects the data points for which the value is higher than 90.

[not(@IsNull)] : selects the data points that do not have an "IsNull" attribute
[@ItemOID="T_SYSBP' and @ Value > 120]: selects the diastolic blood pressure datapoints for
which the value is higher than 120.

Remark that the latter will also filter out all heights, weights and systolic blood pressure rows in our
example.

A nice XPath exercise is to find out the XPath predicate that does keep all height, weight and
diastolic blood pressure, but filters out the systolic blood pressure higher than 120 (i.e. keeps
diastolic BP less or equal than 120).

Solution at the end of this document!

The great advantage of this method is that one can always re-establish the original selection by
simply commenting out the line with the "xpathfilter" statement. For example:

r The Transformation Script
3 # Generalized for all Forms within the StudyEvent

Generalized for all Itembroups within the Form

Generalized for all Items within the ItemGroup

Except for: I_DIZZIY

Mapping for ODM Items [I_HEIGHT, I_WEIGHT, I_S5¥5BP, I_DIABP] to SDTM Codelist V3.VSTESTCD

with Codelist OID 'CL.CE6741.WSTESTCD'

L= e S B U RN Y
e e e e e

$CODEDVRALUE = xpath(/5tudyEventData/FormData[@Form0ID="F BRSELINE' or @Form0ID="F WEEK 1 2']/Ite
_‘,eylﬂ # hCDDEDvALUE = xpathfilter (3CODEDVALUE, " [not (@Valus="M")]1");
11 if (3CODEDVRALUE == 'I_HEIGHT"') {
17 AWNEFLITAATMEMMTITE — THETOETT -

It is also possible to add an additional selection on elements / information higher up in the ODM
tree. For example, we stated that we take the vital signs for all visits (StudyEvents in the ODM). So
if we e.g. want to filter on the "baseline" visit, we need to go up in the ODM tree.

In XPath, going up in the tree, is done using "..". So, if we just want to keep the vitals from the
baseline visit, as we are on the ItemData (data point) level, we must go up 3 levels (ItemGroupData,
FormData, StudyEventData). So, if we use the xpathfilter as follows:

r The Transformation Script

B i A A R L g S

Generalized for all Itembroups within the Form

Generalized for all Items within the ItemGroup

Except for: I_DIZEY

Mapping for ODM Items [I_HEIGHT, I_WEIGHT, I_S5Y5BF, I_DIZBF] to 5DIM Codelist V5.3
with Codelist OID "CL.Ce&741.VSTESTCD'

$CODEDVALUE = xpath({/StudyEventData/FormData[@Form0ID="F BASELINE' or @FormOID='F WE
s .

'$£D CODEDVALUE = xpathfilter ($CODEDVALUE,™../ ../ ../ /B53tudyEventOID="BASELINE"") ;
- I

LYm i o RS I I B O

resulting in an SDTM table with only the rows representing data from the baseline visis:

| £ SDTM Tables

(i) |[cesvs
STUDVID | DOMAIN | USUBJID | vSVSSEQ| VSVSTESTCD VS.VSTEST VS.VSORRES | VSVISITNUM] vSVISIT
CES Vs 001 1|HEIGHT Height 193 0|BASELINE
CES VS 001 2[WEIGHT Weight 30 0[BASELINE
CES Vs 001 3/sYsBP Systolic Blood Pressure_|120 0|BASELINE
CES VS 001 4|DIABP Diastolic Blood Pressure |30 0|BASELINE

This is of course something we never want to do in a real submission!
It is also possible to have several additional filters.

For example, the following script:

r The Transformation Script
3 # Generalized for all Forms within the StudyEwvent

Generalized for all ItemGroups within the Form

Generalized for all Items within the ItemGroup

$ Except for: I_DIZZY

Mapping for ODM Ttems [I_HEIGHT, I_WEIGHT, I_SYSBF, I_DIABF] to SDTM Codelist V5.
with Ceodelist OID "CL.C&&741.VSTESTCD'
&
&
5

Wooa -1 o s

W

CODEDVALUE th{/StudyEventData/FormData [@FormOID="F BASELINE' or @FormOID="F W
CODEDVALUE 48 1filter ($CODEDVALUE, ". ./ ../ .. /E5tudyEventOID="BLSELINE "} ;
ipathfilter (SCODEDVALUE, " [not (EValus="M"}1"):

I
"

10
11

I
"

CODEDVALUE

will only keep the vital signs information from the baseline visit for which the value is not "M".

Exercise: write the "xpathfilter" line for selecting subject with ODM SubjectKey=001.

Limitations

At the moment, one may only apply the "xpathfilter()" function on the "looping" variables, which
usually are --TESTCD, --TERM, and --TRT depending on the SDTM/SEND class.
Adding such a filter in any non-looping variable mapping script will not have any effect at all.

Furthermore, currently, the "xpathfilter()" can only be used to filter a variable on itself, i.e. the

result variable and the variable provided as the argument, must be the same.
This is a limitation that may be removed in future.

Solution of the exercises

1. Write the XPath predicate that does keep height, weight and diastolic blood pressure, but filters
out the systolic blood pressure higher than 120 (i.e. keeps diastolic BP less or equal than 120).

Solution: [@ItemOID='T_WEIGHT' or @ItemOID='1_HEIGHT' or @ItemOID="T_DIABP' or
(@ItemOID="T_SYSBP' and @ Value <= 120)]

resulting in:

|£:| SDTM Tables

@ [CESWS
STUDYID | DOMAN | USUBJD | VSVSSEQ | VSVSTESTCD VS VSTEST VSVSORRES | VSVISITNUM VSVISIT
CES s 001 AIHEIGHT Height 193 0|BASELINE
CES s 001 2IWEIGHT Weight 90 0|BASELINE
CES B 001 3lsvser Systolic Blood Pressure |120 0|BASELINE
CES B 001 4lDIAEP Diastolic Blood Pressu...|80 0/BASELINE
CES Vs 001 BIWEIGHT Weight 90.1 1WEEK 1
CES B 001 5IDIABP Diastolic Blood Pressu...|90 1IWEEK 1
CES Vs 001 7IWEIGHT Weight 890 2IWEEK 2
CES Vs 001 glDIAEP Diastolic Blood Pressu. |84 2IWEEK 2

where one sees that the record with VSTESTCD=SYSBP and VSORRES=123 has disappeared.

One can also use (a bit more sophisticated):
[not(@ItemOID="T_SYSBP') or @Value <= 120]

2. Write the "xpathfilter" line for selecting subject with ODM SubjectKey=001

Solution:

Our "looping" is on the "ItemData" (i.e. data point) level. To get to the "SubjectData" level, we need

[../../..]./@SubjectKey="001"]

to go 4 levels up (ItemGroupData, FormData, StudyEventData, SubjectData), for which we use
"../../../../" and then take the value of the "SubjectKey" attribute "@SubjectKey".

To exclude subjects, one just need to revert the expression using "not()", e.g.

[not(../../../../@SubjectKey='007") and not(../../../../@SubjectKey='013")]

would exclude all data for subjects 007 and 013.

Conclusions

The new (as of SDTM-ETL v.4.4) "xpathfilter()" function allows, for special and more complicated
situations, to break up the filtering in several steps.

With this new function, one can start from a simple selection for the looping variable (usually -
-TESTCD, --TRT or --TERM), e.g. select all items of a specific form for all visits (StudyEvents),
and then add additional filters, until the desired selection is obtained.

The use of the "xpathfilter()" requires a basic understanding of the ODM standard and the hierarchy
of the "ClinicalData" part of ODM, and some basic understanding of XPath. XPath is however easy
to learn, and many introduction tutorials can be found on the internet.

As for all mappings in SDTM-ETL, one should of course always test the results on correctness and
completeness.

https://www.cdisc.org/standards/data-exchange/odm

