
SDTM-ETL 4.2: Summary of New Features

Author: Jozef Aerts, XML4Pharma

Last update: 2023-04-20

Summary

This document contains a summary of the most important new features of SDTM-ETL 4.2
There are many minor improvements and new features that are not described in this
document, but that can be found in other manuals / tutorials of SDTM-ETL 4.2.

Table of Contents

Implementation of CDISC "Code Tables" as ValueLists ... 1
CodeList selection and editing: new "Show CodeList Details" button...................................... 9
Further improvements on the CodeList-CodeList mapper wizard... 11
Sorting of SDTM/SEND records using the "Keys" in the underlying define.xml................... 15
Better handling of hypervertical structures - new wizards... 18
CDISC CORE Validation ... 20
Cleaning up define.xml: non-CDISC-CT aliases... 21
ChatGPT and word similarity use for mapping suggestions.. 22
Additional parameters in the "properties.dat" file.. 26
Support for SENDIG v.3.1.1 .. 28
Display of last define.xml loaded... 28
Bug fixes .. 28

Implementation of CDISC "Code Tables" as ValueLists

Due to the "hypervertical" structures of especially the Findings domains, there are many
dependencies between variable values of especially --ORRES, --ORRESU, --STRESC and -
-STRESU, meaning that the properties of e.g. RPSTRESC (Character Result/Finding in
Standard Format) and of RPSTRESU (Unit) in the RP (Reproductive Systems Findings)
depends on the value of RPTESTCD (Test Code). From the by CDISC published Excel file:

However, for actual mapping work, such Excel files are unusable, and the mapper would need
to copy-paste information from them into the wizards for setting up "ValueList"s in the
underlying define.xml, which can easily mean hours of work and is error prone.

Therefore, we made most of the "code tables" from CDISC available as define.xml "snippets"
which can then be imported in any define.xml structure during the mapping.
These "ValueList" define.xml files are located in the directory
"CDISC_CT/CodeTables_separate":

Code tables that have not been implemented (yet) are the code tables for IS (Immunogenicity
Specimen Assessments) with their dependencies between LB (Laboratory) and MB
(Microbiology) domains and the IS domain. Also the SEND code tables have not been
implemented as they seem to have been retreated by the SEND team.
Remark that all these "ValueList" define.xml files come as Define-XML 2.0 format. However,
when using define.xml 2.1, they are automatically transformed to v.2.1 before being imported.

In order to import one of these ValueLists, use the new menu "Insert - ValueLists for CDISC
CodeTables from File into define.xml":

One is then prompted to select a file from the "CDISC_CT/CodeTables_separate" directory.
For example, for RP (Reproductive Systems Findings):

In order to help selecting the right one, when one clicks on a file name, some explanation is
provided, e.g.:

Then clicking "Open" imports the "ValueList define.xml" and inserts it into the existing
define.xml. Immediately after this, the user is given the opportunity to still edit (or also only
inspect) the imported value lists:

which is then opened with the "ValueList Editor" (in the case of complicated ValueLists this
can take some time) after a message is shown:

(Remark that "SASFieldName" is another relict of the outdated SAS Transport 5 format).
Followed by the editor itself:

One sees e.g. that for the first 9 "use cases", a "Yes-No" codelist is associated, i.e. the value
for RPSTRESC can only be "Y" (Yes) or "N" (No). For the use case that RPESTCD =
DLVRMODE (Mode of Delivery) the associated codelist for RPSTRESC is the CDISC
"C81179.DLVRMODE" codelist with values:

Also the "where clause" can now be inspeced (or even edited) by clicking on it. For example
for "Delivery Mode", clicking on "WC.MOLDLV.C81179.DLVRMODE" opens the wizard
for that "where clause":

and clicking the "Show 'Where' clause" provides a human-understandable description of it:

After having imported the "ValueList define.xml", one can assign it to the corresponding
variable.

For RPSTRESC by selecting the cell, and then use the menu "Edit - SDTM Variable
Properties", leading to:

and assigning the ValueList to it by selecting the "New ValueListOID" (near the bottom):

After clicking "OK", the valuelist VL.RP.RPSTRESC is then assigned to the SDTM variable
RPSTRESC. This can then also be seen in the "view" by using the menu "View - View
define.xml in browser":

Of course, one can then still always edit the valuelist, although this will only be necessary in
seldom cases.

Similar for RPSTRESU:

leading to (in the view):

CodeList selection and editing: new "Show CodeList
Details" button
When assigning a codelist to an SDTM variable, it is not always immediately obvious which
one to choose from the large list available from CDISC or added or subsetted. So one often
wants to have a "preview" of what is in the codelist. In order to make this easier, a new button
"Show Details" has been added to the "CodeList Selection" wizard:

Clicking the "Show Details" button for the selected codelist (in this case "CSTATE") opens a
new window with the details:

providing the term as well as the CDISC-NCI code (in square brackets).

Further improvements on the CodeList-CodeList
mapper wizard
The CodeList-CodeList mapper wizard has always been one of the features mostly
appreciated by our users: it saves hours and hours of otherwise tedious (and error prone)
script writing work (as is required when e.g. using SAS for developing mappings).

One of our customers asked us to add some features making the wizard even more user-
friendly.

When mapping an item "Adverse Event Action Taken" to AEACN by drag-and-drop:

and choosing to use the CodeList-CodeList mapper wizard, one comes to:

One sees that on the ODM side, numeric values 1-4 were used for the codes, which then must

be mapped to the SDTM codelist items like "DOSE INCREADED". Pointing the mouse over
an item on the ODM side then shows the "decode", i.e. the meaning of the code. For example
for "2", the decode is "Study drug regimen changed".
On request of a user, we now added the possibility to also show the "decode" directly on the
label itself. For this, an additional checkbox "Show ODM decoded values" was added:

When it is checked, the view changes into:

which makes it easier to make the necessary decisions.

Another highly appreciated feature of the CodeList-CodeList mapper wizard is the button
"Attempt 1:1 mapping", which, when clicked, makes proposals for a mapping based on word
similarity.

In our case, this leads to:

which is clearly wrong...
However, when one already had another study that used the same codes (on the ODM side),
one would have stored the mapping in the "Company Synonym List", which would then lead
to the correct mapping, e.g.:

After clicking "OK", the mapping script is automatically generated:

New is, that when the user asked for also displaying the "decoded values" in the wizard,
additional comment lines are added to the mapping script, explaining what the codes are, and
thus allowing to better understand the mapping script.

Sorting of SDTM/SEND records using the "Keys" in
the underlying define.xml
On request of one of our customers, we also added the feature allowing to resort the generated
records in the SDTM/SEND datasets according to the "keys" (def:KeySequence attribute) in
the underlying define.xml.

Essentially, the keys in the define.xml were never meant for sorting, they were introduced for
providing the reviewer information about record uniqueness, i.e. the set of keys used will
guarantee the uniqueness of the records.
Remark that also the combination of USUBJID and xxSEQ provides this, but one needs to
take into account that xxSEQ is an "artificial" key, which needs to be generated in a post-
processing step, whereas the keys defined by the "def:KeySequence" attribute are "natural
keys".

Some users however also use the keys as defined in the define.xml for sorting the records in
the datasets when these are generated. Therefore, we added the feature to enable this.

Keys can be added to a dataset by double-clicking the first cell in the row (designating the
dataset). E.g. for MB:

which leads to the editor dialog for the dataset:

One notices the button "Set domain keys and sequence". Clicking it e.g. leads to:

When one would now like to sort according to "One record per subject per visit per specimen
per test", one adds the corresponding variables from the list on the left, using the button
"Add". In our case:

One can then still change the order using the "Move up" and "Move down" buttons.

After clicking OK, the keys have been added in the provided order to the dataset definition in
the define.xml:

When now starting executing the mappings, an additional checkbox appears:

when it is checked, a message appears:

reminding the user that use of this feature requires a careful choice of the keys for sorting!

IMPORTANT remark:
The "key variables" are not the same thing as the "looping variables". The latter define how
the iteration over the data points in the source (i.e. ODM) data is to accomplished as defined
by the XPath in the mapping for that variable. For example, in "Findings" domains, it will
often be sufficient to set xxTESTCD as the "looping variable" and take care in the XPath for
xxTESTCD that all suitable tests, for all or a specific set of visits, for that domain/dataset is
represented.

Better handling of hypervertical structures - new
wizards
Especially in phase 1 studies, one often sees the use of "hypervertical" structures, e.g. that

"flat" tables are used with one column containing the parameter (code), often a column
containg the parameter label, some columns containing further attributes, and a column
containing the values. In database science, this model is named the EAV model (Entity-
Attribute-Value) and is advantageous when there is a large number of parameters.
When such tables, often stored / exchanged as Excel or CSV files are used in SDTM-ETL,
they first need to be transformed into ODM (e.g. using the ODMGenerator software), often
leading to a single Form with a single ItemGroup. For example:

Although completely valid ODM, it is a bit unusable, as "ItemOID" is usually used to store
the test code or name (e.g "IT.Bilirubin") and "Value" is used to store the collected value (e.g.
"3.2").

In SDTM-ETL, this classic structure allows easy drag-and-drop and selection of items to be
mapped to SDTM domains and variables. With hypervertical structures, the XPath
expressions are a bit more complicated, as a single "ItemData" does not contain test code and
test value anymore, but that is spread over 2 "ItemData" elements within the same
ItemGroupData. On the other hand, for the parameter (here in the ItemData with OID
"IT.ParameterName", very often one will have a codelist generated, containing an item for
each separate test.

So, a somewhat different mapping mechanism is required, for which a new wizard has now
been added.

The complete description of this new feature can be found in the separate tutorial "Working
with hypervertical structures" which can be found on the SDTM-ETL website under
"tutorials".

http://www.xml4pharma.com/CDISC_ODM_Generator/index.html
http://www.xml4pharma.com/SDTM-ETL
http://www.xml4pharma.com/SDTM-ETL/tutorials/Working_with_hypervertical_structures.pdf

CDISC CORE Validation
CDISC CORE is a revolution in the area of validation of CDISC datasets for submissions of
datasets to the regulatory authorities (and beyond that).

As one of the first software vendors (if not the first), we have implemented CORE in our
software, enabling to use CORE from within SDTM-ETL v.4.2. The implementation allows to
select on datasets generated, as well as on rules to be executed during the validation process.

As CORE is still evolving, we have implemented it so that the CORE engine can easily be
exchanged for a newer version (which we will make available regularly) without the need of
an SDTM-ETL software update.

A separate tutorial covering CORE validation is available on the SDTM-ETL website.

http://www.xml4pharma.com/SDTM-ETL/tutorials/SDTM-ETL_CORE_Validation.pdf
http://www.xml4pharma.com/SDTM-ETL/tutorials/SDTM-ETL_CORE_Validation.pdf
http://www.xml4pharma.com/SDTM-ETL/tutorials/SDTM-ETL_CORE_Validation.pdf

Cleaning up define.xml: non-CDISC-CT aliases

In SDTM-ETL, it is possible to add different "Alias" elements for SDTM variables. The best
known one in the "Alias" providing the CDISC-NCI code for codelists and codelists items.
For example:

providing the CDISC-NCI codes for as well the codelist itself (C66769) as well as for the
individual items. More and more, CDISC is using this CDISC-NCI code as the unique
identifier. In some of the codelists, the "CodedValue" is now the NCI code.
That it is a CDISC-NCI code is indicated by the value of the "Context" attribute, which must
be "nci:ExtCodeID" in the case of a CDISC codelist.

During the mapping however, other "Alias" elements may have been added, sometimes even
automatically. For example:

Often, when "cleaning up" the define.xml using the menu "File - Save cleaned define.xml",
one will often want to only retain the "Alias" elements that point to CDISC controlled
terminology. This is now achieved by a new checkbox in the wizard:

Also new is the checkbox "Remove Method References and Definitions from all Variables
that are not marked as "derived". It takes care that all references to, and the method
definitions are removed for all SDTM/SEND variables for which the "Origin" is not
"derived", so only retaining the ones for "derived" variables.

ChatGPT and word similarity use for mapping
suggestions

ChatGPT (based on artificial intelligence - AI) has, for many of us, become part of our daily
life. Especially for SDTM beginners, it can provide reasonable hints for mappings. Therefore,

we have build an interface to ChatGPT into SDTM-ETL v.4.2.
Its use however requires that the user has obtain a ChatGPT API key, which needs to be
added to the "properties.dat" file (see further on).

In order to use ChatGPT for obtaining a mapping hint, first select an item in the ODM tree,
for example "WBC":

Then use the (new) menu "Explore - Ask ChatGPT for mapping suggestions",

leading to a pre-filled dialog:

https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/api-reference

One can of course than still change the wording of the question.
Clicking "Ask ChatGPT" then leads (after a few seconds) to:

with ChatGPT's answer: "The CDISC SDTM domain to which WBC (white blood cell count)
should be mapped is the Laboratory (LB) domain."

However, when one changes the question into: "To what CDISC SDTM domain and SDTM
variable should I map WBC to?", ChatGPT's answer is not entirely correct:
"The CDISC SDTM domain for WBC (white blood cell count) is LBS (Laboratory Test
Results). The SDTM variable for WBC is LBSTRES (Laboratory Test Result).", as there is no
SDTM variable "LBSTRES". The answer should be "LBORRES", and some information
could be provided about the use of LBSTRESN and LBSTRESC.

We expect however that ChatGPT will rapidly become better, also for clinical research and
for mapping to SDTM and SEND, as there is already so much knowledge available in articles,
forum discussions and blogs.

Another possibility to obtain a mapping suggestion is based on word similarity between the
ODM item name (and the question) and the SDTM coded value and decode in CDISC
codelists. To use it, select an item in the ODM tree (such as "WBC") and then use the menu
"Explore - Find mapping suggestions from SDTM/SEND codelists". This leads to the
following dialog:

Clicking "Find mapping suggestions" then starts a process, the system going to all the CDISC
codelists, and then sorting according to word similarity. This may take a few minutes, so
maybe time to go for a cup of tea or coffee.

When finished, we obtain:

with 2 good hits (100% similarity) for CPTESTCD (in domain CP - Cell Phenotype Findings)
and LBTESTCD (in domain LB - Laboratory Test Findings).
Using e.g. "Diastolic BP" will lead to:

We expect that the use of AI and similar technologies for helping in SDTM and SEND
mapping will in future further grow. Due to the modular design of SDTM-ETL, we can easily
add interfaces with systems that provide such mapping suggestions, e.g. through private or
public APIs.

Additional parameters in the "properties.dat" file

When starting up the software, one of the first things done is to read the "properties.dat" file
which can be found in the directory where the software was installed:

One can edit this file with any simple text editor (but do not use MS-Word), for example with
the simple MS "Editor" or with NotePad or NotePad++. For example:

where lines starting with a "#" are comment lines.

It also allows to set the API keys for the CDISC Library (parameter "cdisclibrarykey") and
ChatGPT (parameter "chatgptkey").
New parameters as of SDTM-ETL v.4.2 that can be set are:

- "postponeodmtreenoderecalculation": when setting to "true" (default is "false"), when
loading a define.xml with mappings, the use of the ODM items in the mappings (color coding
in the ODM tree) will not automatically be done immediately, but the user will be asked
whether he/she wants to further postpone it, or execute it immediately.
The same can also be achieved by the menu "Options - Settings" by checking the checkbox
"Allow postponing ODM tree node usage recalculation":

Users however have asked us to have this as a startup property, so we added the
corresponding parameter to the "properties.dat" file.

- "numminutesforautosave": allows to set the number of minutes between autosaving the
define.xml structure with the mappings at startup time. Some users have complained that the
default of 5 minutes between autosaving is too short, and they want to have a higher default

value (e.g. 15 minutes). This can now be set in the "properties.dat" file.
Also remark that during loading or merging the define.xml from/to file, autosaving is
automatically skipped, in order to avoid interference with the loading process.

We also removed the property to indicate where the Pinnacle21 validation software is located
from the "properties.dat file", as it is unclear whether starting up this software from another
software is still allowed by the Pinnacle21 license. Furthermore, we strongly believe there is
no place in future anymore for Pinnacle21 Community in the world of validation. CDISC
CORE is certainly the future, for which we now have our own implementation. Interfacing
with validation software of other vendors (that implement CORE) is of course still possible.
Just ask us.

Support for SENDIG v.3.1.1
Templates for SENDIG v.3.1.1 have now been added, meaning that when starting a new
project, SENDIG-3.1.1 can be used right from the start.

Display of last define.xml loaded
Often, it is advantageous to work on one, or group of, SDTM/SEND domains only. In such a
case, especially when then still merging with define.xml-s for other domains, one may loose
oversight. Therefore, we added a new feature that shows what define.xml was last loaded,
which is displayed on the title of the main window. For example:

Bug fixes

In the AP (Associated Persons) domain, there is no USUBJID variable, causing that the
APSEQ value in the post-processing step was not correctly calculated. This has been
fixed. The calculation of the APSEQ value is now based on the value of APID.

When having assigned an "Origin" to a "Non-Standard Variable" (NSV), and using the
option "Move non-standard Variables to SUPP--", QORIG was not populated with the

value of "Origin" in the case of Define-XML 2.0 and 2.1 (it was in the case of 1.0). This
has been fixed.
Remark: QORIG is essentially a design failure: the origin is metadata, not data, QORIG
should never have been added to SDTM.

A problem with referencing ValueList-s for NSV (non-standard variables as
"supplemental qualifiers") in the define.xml has been fixed.

When clicking the checkbox "Remove SDTM variables that do not have a mapping" was
checked, but no such variables were present, an empty list was presented. This has been
fixed.

